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Abstract. We investigate the scaling properties of the excitation energies and transition amplitudes of
the one-dimensional spin—% antiferromagnetic Heisenberg model exposed to an external perturbation. Two
types of perturbations are discussed in detail: a staggered field and a dimerized field.

PACS. 75.10.-b General theory and models of magnetic ordering

1 Introduction

The one-dimensional spin—% antiferromagnetic Heisenberg
model with nearest neighbour couplings and periodic
boundary conditions (Sy4+1 = S1):

N
H=2) S-S (1.1)
=1

has been studied intensively with analytic and numerical
methods. Eigenvalues as well as transition matrix elements
for the spin operator have been calculated with the Bethe
ansatz and quantum group symmetries [1]. These calcu-
lations allow to exploit part of the dynamical properties
of the model, the two-spinon contributions, at T' = 0 [2].
The dynamics of the model in the presence of an external
magnetic field, which is periodic in space

H(h) = H + hS;(q) (1.2)

with

N
Sa(q) =) e"iS}, (1.3)
=1

has been studied so far mainly for ¢ = 0 [3-9]. Since the to-
tal spin S3(0) commutes with H, the eigenvectors of H(h)
and H are the same, the eigenvalues change in a trivial
manner. For this reason the magnetic properties of the
model (1.1) in a constant field — as there are magnetiza-
tion curves, susceptibilities, static and dynamic structure
factors — were accessible by means of the Bethe ansatz
as well. The case of a staggered field, i.e. equation (1.2)
for ¢ = 7, in a one-dimensional Heisenberg model has
attracted considerable interest as an effective model for

* Dedicated to J. Zittartz on the occasion of his 60th birthday
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coupled spin chains. Treating the interchain coupling in
the mean field approach, reduces the system to a one-
dimensional Heisenberg model in a staggered field [10].

It is the purpose of this paper to study excitation en-
ergies

Wmn(th) EEm(N7h) _En(th)7 (14)
and transition amplitudes
Trnn(N, h) = (U (h)[S3(7) W (R)), (1.5)

for the operator Sz(w) in the one-dimensional antifer-
romagnetic Heisenberg model in a staggered field of
strength h.

In Section 2 we derive a system of differential equa-
tions, which describes the evolution in A for wy,, and Ty
Section 3 is devoted to a finite-size scaling analysis of the
ground state excitations w.,,o and T;,0 in the combined
limit h — 0 and N — oo. It is shown in Section 4, that
the critical exponents ¢ and € in the scaling ansatz and the
scaling variable as well can be computed by means of the
evolution equations. For small values of the scaling vari-
able the scaling function is also determined. In Section 5
we analyse in the same way the dimer operator.

2 Evolution equation for excitation energies
and transition amplitudes

Starting from the eigenvalue equation of the Hamiltonian
(1.2)

H(h)lwn(h» = En(N7 h)w/n(h))? (2'1)

it is straightforward to derive the evolution equations for
the energy eigenvalues and eigenstates:

dE,(N,h)
—an - Tnn(N, ), (2.2)
d B Tyn (N, h)

T == 2, Sy ), (29

m#n
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where we have used the definitions (1.4) and (1.5).

The evolution is governed by the transition matrix el-
ements of the operator Sz(m) (Eq. (1.3)). The operator
S3(m) is real hermitian and therefore the matrix (1.5) is
symmetric Ty, = Thm.-

Remarkably enough, there exists a closed system of
differential equations, which describes the h-dependence of
the energy eigenvalues E,, = E, (N, h) and the transition
matrix elements Ty = Tinn(IV, h):

PE, T
=-2 —_— 2.4
th Z Win ’ ( )
l#n
dTimn __ Z TruTin + TruTin _ Tinn dwnm )
l#m,n
(2.5)

The Hamiltonian (1.2) behaves under translations T of
one lattice spacing as:

TH(h)T! = H(—h). (2.6)
Since T is unitary, the eigenvalues
En(N,h) = E,(N,—h) (2.7)
are symmetric, whereas the eigenstates | (h)),
[W(=h)) = T¥(R)), (2.8)

are no longer momentum eigenstates, but linear combina-
tions of two momentum eigenstates with momenta p = 0
and p = m, respectively. Of course, in the limit A — 0
translation invariance is recovered and p is again a good
quantum number. We use the following notation for the
energy eigenstates:

T|Z,(0)) = £|%,(0)), n=0,1,2,..., (2.9)
which means these states carry momentum p = 0 or p =
m, respectively. The ordering of the energy eigenstates is
chosen in such a way that the ground state |¥(0)) belongs
to the ordered sequence of eigenstates with n = 0,2,4,...
All eigenstates in this series have the same momentum.
The series of eigenstates with n = 1,3,5,... carries the
opposite sign. It starts with the first excitation |¥;(0)) and
is independently ordered.

Since the operator Ss(m) changes the momentum of
the state by 7, we get immediately from momentum con-
servation:

Tn(N,0) =0 for (—1)"*"=1. (2.10)
The transition matrix elements T,,o(N,0),m =1,3,5,...
from the ground state |¥,(0)) to the excited states |¥,,(0))
appear in the definition of the dynamic structure factor

S(N,w,p=m,h=0) =

% > " 8[w = wmo(N, 0)]|Timo (N, 0)[?,  (2.11)
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Fig. 1. Finite-size dependence of the ground state energy
(a) and the corresponding transition amplitude (b) of Hamil-
tonian (1.2), for system sizes N = 8,10,...,24(e). The
solid lines represent fits to the asymptotic behaviour (2.13)
and (2.14).

which is known to develop an infrared singularity in the
thermodynamic limit [2]:

uHoA\/Ilan _

S (o0, w, T, 0) — " (2.12)

The gap between the ground state and the excited states
vanishes in the thermodynamic limit:

(2.13)

The coeflicients a.,¢ can be computed in principle by the
methods of conformal invariance and finite-size scaling
[11-13]. The next order terms entering in equation (2.13)
are logarithmic corrections. For this reason it becomes dif-
ficult to fix these coefficients from our system sizes up
to N = 24. The difficulty of this task is extensively dis-
cussed in references [12,14-18]. In Figure 1a, a fit without
logarithmic corrections (a19 = 8.53) and with logarith-
mic corrections (a1p = 9.74) is shown. The exact value is
ajp — 7'('2 =9.86... [13]

Neglecting the logarithmic corrections in the large-N
behaviour, we expect for the transition amplitudes:

N —oc0

Tomo(N,0) =5 boN®, m=1,3,... (2.14)

The exponent x turns out to be k ~ 1/2, as can be seen
from the numerical data for T19(N,0) in Figure 1b. This
is in agreement with conformal field theory, from which in
the present case follows £ = ajo/27? (See [19,20] and ref-
erences therein). We consider equations (2.10, 2.13, 2.14)
as initial conditions for the system of differential equations
(2.4, 2.5).
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Fig. 2. The ratio (3.1) for m = 1,2,3 wversus (Nh)® with
€ = 0.66. The solid lines show the fits to the small z-behaviour
of emo(z) (cf. (3.5)).
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Fig. 3. The ratio (3.2) for m = 1,3 versus (Nh)® with € =

0.66. The solid lines show the fits to the small z-behaviour of
fmo(z) (cf. (3.6)).
3 The finite-size scaling analysis

In this section we present numerical evidence for the va-
lidity of a finite-size scaling ansatz:

Wmo(N, h)
ZmP Y q A
WmO(Nv 0) - emo (m)’ (3 )
Tmo(N, h)
Tmo(N,O) +fm0(x)7 m 737 ) (3 )
in the combined limit
N — o0, h—0, withfixed = Nh*. (3.3)

Note, standard finite-size scaling theory [21,22] usually
employ y = z'/¢ as the scaling variable. For our purpose
it is more convenient to use z instead.

In Figures 2 and 3 we show our numerical results for
the ratios (3.1, 3.2) on finite systems with N = 8, 10, ..., 24.
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Fig. 4. The scaling behaviour of the transition amplitudes
Too(N, h) and Tao(N, h) for small x (see Egs. (3.8, 3.10)).

The best results are achieved for
e =0.66(1). (3.4)

The small z-behaviour of the scaling functions is well
parametrised by:

emo(T) = emoz®e, (3.5)

fmo(z) = Fmox®?, (3.6)
with

be = by = 3.00(4). (3.7)

The diagonal matrix elements of the staggered operator
S3(m) vanish in the limit A — 0 (¢f. Eq. (2.10)). There-
fore, a scaling ansatz of the type (3.2) does not make
sense. However, according to (2.2) the diagonal matrix el-
ements of S3(m) can be identified with the first derivative
of the corresponding energy eigenvalue. Assuming, that
these scale in the same manner (3.1) as the excitation en-
ergies, we expect:

Too(N, h) = Nh foo(z)z 2, (3.8)
with o = 1/3. In Figure 4 we have plotted Too(h)/Nh?
versus the scaling variable x = Nh€. The scaling hypoth-
esis works fairly well.

Moreover, the scaling function
foo(.’l?):ti2 ac_—>(>) fooz, (39)
shows for small xz-values a power behaviour, which is in
agreement with (3.6) and (3.7). Finally, let us turn to the
transition amplitude Tho(h), which also vanishes in the
limit A — 0. In Figure 4 we have plotted

Too(N, h)

m = fzo(ﬂﬂ)a

(3.10)

versus the scaling variable 3. Here we have assumed that
Ty and wgg/h scale in the same manner. This is indeed
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the case as can be seen in Figure 4. Moreover, in the small
x region the scaling function behaves as it is expected from
(3.6) and (3.7).
In summary we observe that the excitation energies —
with respect to the ground state — scale with h¢ (e ~ 2/3):
Wmo (N, h) = hQ2po(x). (3.11)
As before, we have neglected logarithmic corrections due
to marginal operators. These corrections were deduced by
means of conformal field theory [23]. The transition am-
plitudes scale with h° N (o ~ 1/3):
Tmo(N, h) = NhOpmo(). (3.12)
The small z-behaviour of the scaling functions 2,,0(x)
and O,0(z) is fixed by the initial conditions (2.13, 2.14):

m=20,1,2, ...
(3.13)

Qmo(x) = amOm_l[l + emo(ﬂ,‘)],

According to (2.10) and (2.13) the small z-behaviour of
different ©,,0(x) is different for m even and m odd, re-
spectively:

@mO(iv) = {amox2fm0(m)

broa 21+ fuo()]

(3.14)

Again b,,0 is given by the initial condition (2.14). The
large x-behaviour of the scaling function for the first ex-
citation is of special interest. If

QOO
is finite, equation (3.11) tells us that there is a gap in the
thermodynamic limit, which opens with h¢ e ~ 2/3. We
have analysed our finite system data with the BST [24]
algorithm and found:

0% =4. (3.16)
A similar statement can be derived from equation (3.12)
for the staggered magnetization, which can be expressed
in terms of the transition matrix elements T},o(V, h):

= 3 [ To(V, )

(3.17)

4 The evolution equation in the scaling limit

The critical exponents ¢ = 1/3 and € = 2/3 in equa-
tions (3.11, 3.12) as well as the small z-behaviour ¢ = 3
of the scaling functions shown in Figures 2, 3 and 4 will
now be derived from the evolution equations (2.2) and
(2.3) in the scaling limit (3.3). We assume that a scaling
ansatz of the type (3.11) and (3.12)

Winn (N, h) = b2,
Ton(N,h) =

(),
Nh? Oy (),

(4.1)
(4.2)
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with the scaling variable

x = Nh, (4.3)

holds for all the transition energies and amplitudes. Fur-
thermore, let us assume that the small z-behaviour of the
scaling functions:

z—0

2pon () = amnx” [1 + emn ()], (4.4)
-2 . +m _
20 | Gmn® 2 frn () (=)t =1
@mn(m) 7 {bmnm_a/€[1 + fmn(m)] : (_1)n+m =-1"
(4.5)
follows from the initial conditions:
lim Nwpn(N,0) = amn, (4.6)
N—oo
and
T (N, 0) 25° b, N* (4.7)

where by, = 0 for (—1)"*" = +1. The exponents k, o
and e are then related:

K=1- (4.8)

o
€

Now we discuss the evolution equations (2.4) and (2.5)
in the scaling limit (3.3), in conjunction with the scaling
ansatz (4.1, 4.2). It is convenient to inspect the derivative

d2
_ N —2p—3e+2
Then the left- and right-hand sides of (2.4) acquire the

following form:

Dy = e(le—1)x 202, (x)
1 A2 () d? 2 ()
_ 1 2
+e(3e—1)z s +e PO (4.10)
D1 _ 2h20'74e+2
(z) le x) an x)
x (x) Z Qm () Z 21, (x)
(4.11)
A similar calculation for the derivative:
hiln[ Tonn (N, B)wmn (N, h)] (4.12)

yields for the left and right-hand sides of equation (2.5):

Dy=(c+e)+ em% In[On () 2 ()], (4.13)
D2 _ h072e+1
x)@ln ) 1 1
X +
l;;:n Onmn( Qim () ()
(4.14)
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The corresponding left-hand sides and right-hand sides in
(4.9) and (4.12) scale in the same manner provided that

o=2—1. (4.15)

In this case (4.1) and (4.2) lead to a system of differential
equations for the scaling functions 2,,,,(z) and O, ().
Combining (4.15) and (4.8) we see that the exponents

1 11—k
€= o=
1+ K’ 1+ K’

(4.16)

are fixed by the exponent « in the initial conditions (4.7).

The small z-behaviour is governed by the initial con-
ditions (2.14) and (2.13). They tell us that the leading
behaviour of the right-hand side of (4.11) arise from exci-
tations with (—1)"*™ = —1 and (—1)"*" = —1

6% (z) b7
li im _ “lm ,1-20/¢ ) 4.1
mlino -le (-77) Alm ( 7)

Therefore, the terms in (4.11) should be proportional to
&~ 3+2/¢_ Assuming that the small 2-behaviour of functions
emn(x) can be described by a power law ansatz:

emn(Z) = emnz® + ..., (4.18)
it follows from (4.10) that
D1 = Gmn€mnz® 3 ¢ee(pee — 1) (4.19)
is also proportional to z—312/¢ if
2
62 (4:20)

Therefore, the first coefficient e, in the scaling function
emn () is completely fixed by the initial values ajn, bym:

2
bmn

2
Amn

[

2epmn = 2 (1 — (=1)™*")

1

L (1—(=1)"m) @} )

Amn Alm Aln

l#m,n
(4.21)

Next we study the small z-behaviour of (4.12). We will
discuss the two cases (—1)™™" =1 and (—1)™™" = —1
separately.

4.1 (-1t =1

The right-hand side of (4.14) is governed by the excitations
with (=1)*™ = —1 and (-1)"*" = —1:

_Omi(@)On (@) { S ]
x__>(>) bmlbln [ 1 +L] .772/6
Qn

aim Frn(2)’

(4.22)

Amn Aim
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For the left-hand side of (4.13) we get:
d
3e—1+ er In[@pn () 2 ()]
d
29 14 ez—In frun(2). (4.23)
dz
Consistency of (4.22) and (4.23) is achieved if
Frun (@) 222 frana®?, (4.24)

with ¢y = ¢ = 2/€. The coefficient fp,, in (4.24) is com-
pletely fixed by the initial conditions:

1— _1)l+m1_ -1 I+n
o = - 3 DML D

l#m,n

bmibin 1 1
x —miin <—+—> (4.25)
Gmn Qlm, Aln
4.2 (—1)mtn = -1
The contributions in (4.14) vanish:
mel(x)@ln(x) { 1 n 1 }
@mn(m) le(l‘) an(x)
z—0 1+ (_1)m+l blnaml |: 1 1 :|
o= —t —| foulz
2 bmn Aln Qlm, f l( )
T+ (=) bam, [ 1 1
2 b L )

(4.26)

since the scaling function f;,, vanishes for the excitations
with (—1)"*™ = 1, according to equation (4.24). The lead-
ing behaviour of (4.13):

d
-1 —1 mn an
3e —l—eacdx n[Omn () ()]

20 ¢ (% Foun () + emnx2/6) (4.27)

is governed by the scaling functions e, (z) and fin(z)
for the excitations with (—1)"*" = —1. Combining (4.26)
and (4.27) we obtain:

2(emn + fmn)
_ Z 1+ (—21)l+m fml binGmi |:ai n L:|

I£mon bmn ml Qn
1+ (D" byam [ 11 }
+ fn — 4+ —- (4.28
l;gn:,n 2 ! brnn Am] Aln ( )

In summary we conclude:

1. For consistency, all the scaling functions:

emn() = emna? +el) xbt 4 (4.29)
Frn(@) = frnz?® + fD2® 4.0 (4.30)

have the same small z-behaviour with exponent

¢ =2/e.
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2. Equations (4.21), (4.25) and (4.28) enable us to express
the first coeflicients ey, frn in terms of the initial
values ajpm, bim -

3. Having determined the lowest order in z of the scaling
functions, we can proceed and compute the next order
z? from the differential equations (4.9) and (4.12).
The exponent ¢; turns out to be ¢1 = 2¢p = 4/e for all
the scaling functions. Moreover, the next order coeffi-

cients esylb%, fﬁ% can be expressed again in terms of the
initial values a,n, by and the zeroth order coefficients
€mn, fmn

4. The power ansatz ansatz (4.4) and (4.5) for the small
z-behaviour of the scaling function is only consistent
with a power ansatz (4.7) for the finite-size correc-
tions of the initial values. Logarithmic corrections of
the latter will induce logarithmic corrections in the
small z-behaviour of the scaling functions.

Finally let us discuss equations (4.21) and (4.28) for
the lowest excitations ejg and fi¢ from the ground state.
The numerical results shown in Figures 2 and 3 tell us
that the coefficients in the scaling functions for the higher
excitations eg3 and fo3 are considerably smaller. If we ne-
glect in equations (4.21) and (4.28) all higher excitations
we find

b%
€10 — 2aT, (431)
10
and
eio + f10 ~ (. (432)
A comparison of the slopes
e10 = 0.0196(8), fi0 = —0.0177(8), (4.33)

in Figures 2 and 3 demonstrates that equation (4.32) is in-
deed well satisfied. The numerical values of ajg = 9.74(8),
bio = 0.95(3), estimated from the data of figure 1, to-
gether with equation (4.4) yield a value e1p = 0.019. This
is in agreement with equation (4.33) and might be seen
as an indication that the neglect of higher excitations is
justified.

5 The Heisenberg model in a dimerized field

The general features developed for the 1D spin-1/2 Heisen-
berg model in a staggered field can be applied to all Hamil-
tonians of the type

H(5)=H+6Hp (5.1)
where H is the unperturbed Hamiltonian (1.1) and Hp

denotes a perturbation operator. As a further interesting
example we want to discuss here the dimer operator

N
Hp=2) (~1)"S,-Sny1. (5.2)
n=1
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Hamiltonians of type (5.1) with Hp as (5.2) have been
discussed in the framework of (organic) spin-Peierls mate-
rials [25], where the interaction between linear antiferro-
magnetic chains and the three-dimensional phonon system
causes a dimerization of the lattice [26-28]. In case of the
more recently discovered inorganic spin-Peierls material
CuGeOg3, reference [29], it turned out that in addition a
next nearest neighbour coupling in the spin chain has to
be considered [30]. We will not discuss the influence of
such a term in this paper.

The evolution equation for the energy eigenvalues
E,(6) and the transition amplitudes:
are obtained from (2.4) and (2.5) by a simple substitu-
tion: h — 6, E,(N,h) — E,(N,d), and Ty (N, h) —
Tmn(N, ). Note however, that the dimer operator (5.2)
conserves the total spin in contrast to the staggered spin
operator. Therefore, the excitations from the ground state
are singlet states as well.

For the solution of the evolution equation we need the
initial values for the excitation energies:

lim Nwpn(N,0 = 0) = amn, (5.4)
N —oc0
and for the transition amplitudes:
Tmn(N,0) =0 for (-1)™" =1, (5.5)
Trmn(N,0) = b, N®  for (—=1)™"" = —1. (5.6)

Equation (5.5) results from momentum conservation at
d = 0 and the fact that the operator (5.2) changes the
momentum by 7. Equation (5.6) is an ansatz for the finite-
size dependence of the transition amplitudes. Numerical
data are shown for T1o(NV,0) in Figure 5. They suggest
an exponent k£ = 0.37(5), which deviates from the stan-
dard values k = 1/2, predicted by conformal field theory
[19,13]. The discrepancy is due to strong logarithmic cor-
rections, which are disregarded in the fit (5.6). This leads
to a shift of the exponent x. We expect that the standard
value k = 1/2 will show up with increasing system size.

Next we study the finite-size scaling ansatz of the type
(3.1) and (3.2):

wlo(N, 5) o
wlo(N, 0) =1+ 610(1‘) (57)
TR = 1+ (o) ()

for the lowest excitation energy wio(V,d) and transition
amplitude Tyo(N, ). Numerical results are shown in Fig-
ure 6. Optimal scaling is achieved now with a scaling vari-
able

x = N6, €=0.72(1), (5.9)
which is in good agreement with the value
e=(1+k)"t~0.73(5), (5.10)
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Fig. 5. Finite-size dependence of the ground state energy
(a) and the corresponding transition amplitude (b) of Hamil-
tonian (5.1), for system sizes N = 8,10,...,24(e). The
solid lines represent fits to the asymptotic behaviour (2.13)
and (2.14).
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Fig. 6. The ratios (5.7) and (5.8) for e19(z) and fio(z) versus
(N§°)® with € = 0.73. The solid lines show the fits to the small
z-behaviour.

which follows from the exponent x = 0.37(5) in the initial
value shown in Figure 5. This value (5.10) is compati-
ble with previous results extracted from a finite-size scal-
ing analysis combined with renormalization group analysis
[31-33].

The exponent ¢ in the small z-behaviour of the scal-
ing functions e1g(z) and fip(z) is in agreement with equa-
tion (5.10):

¢ =2/e=2.74(5). (5.11)
The coefficients ey and fig in front:
€10 — 00346(8), f10 = —00314(8), (512)

obey the approximate relation (4.32). It is remarkable to
note, that the relation (5.10) between the exponents € and
k holds inspite of the fact that the true large N behaviour
(k =1/2, e = 2/3) is not yet visible in the finite system
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results. Affleck and Bonner [34] have discussed the im-
plications of logarithmic corrections to critical exponents.
They have comprised those corrections into effective scal-
ing dimensions i.e. “critical exponents” and found € = 0.78
for chain length N = 20.

In the same way, as we have analysed the large x-
behaviour of the scaling function (3.15) in a staggered
field, we have extrapolated the gap in the presence of a
dimerized field:

0258 =6.0(1). (5.13)

6 Conclusions and perspectives

In this paper we have developed a general procedure to
investigate the behaviour of antiferromagnetic Heisenberg
chains, which are weakly perturbed by an external field.
As examples we considered here a staggered field and a
dimerized field, respectively.

The question of interest is: What happens with the
excitation spectrum and transition amplitudes under the
influence of the perturbation? The procedure used in this
paper is based on the observation that excitation ener-
gies and transition amplitudes for the perturbation op-
erator satisfy a system of differential equations (2.4) and
(2.5), which describe the evolution in the strength h (or d)
of the external field. The initial conditions (2.10), (2.13)
and (2.14) are completely fixed by the excitation spec-
trum and transition amplitudes of the unperturbed system
(h =10, = 0). We have shown in Section 4 that a scaling
ansatz ((4.1) and (4.2)) leads to a consistent solution of
the evolution equations in the scaling limit (3.3). The ex-
ponents o and € in the scaling ansatz ((4.1), (4.2)) and the
scaling variable Nh¢ are fixed by the finite-size behaviour
of the initial conditions (2.10), (2.13) and (2.14).

We have also tested numerically the predictions of the
scaling ansatz and found good agreement for the expo-
nents as well as for the scaling functions for small values
of the scaling variable. Therefore, the behaviour of the
perturbed system in the scaling limit (3.3) is well under-
stood.

To answer the question whether a gap opens in the
presence of an external field (h fixed) in the thermody-
namic limit (N — o0), demands the knowledge of the scal-
ing functions (4.4) for large values of the scaling variable.
In principle, this asymptotic behaviour follows from a solu-
tion of the differential equations (4.10), (4.11) and (4.12),
(4.13) for the scaling functions using the initial condi-
tions (4.4) and (4.5). In practice, it might be easier to
study this limit numerically coming from finite system re-
sults. Our numerical data are consistent with a constant
behaviour (3.15) of the gap scaling function.

The opening of a gap in a uniform field has been re-
cently observed [35] in a neutron scattering experiment on
copper benzoat Cu(CgD5COO)s - 3D20. The existence of
field dependent and field independent low energy modes
at wave vectors ¢ = w(1 — 2M) and ¢ = m, respectively,
leads to the expectation, that the compound is adequately
described by the Hamiltonian (1.2) in a uniform external
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field BS3(p = 0). This system is known to show up zero
energy excitations at wave vectors ¢ = m(1 — 2M) and
q = 7 in the longitudinal and transverse structure factors,
respectively [3,4,6].

The exponential fit to the temperature dependence of
the specific heat data revealed, however, that there is a
gap which opens with the field strength B as B¢, € ~ 2/3.
This means of course, that the compound copper ben-
zoat can not be described by (1.2) with p = 0. Oshikawa
and Affleck [36] argued that the local g-tensor for the
Cu-ions generates an effective staggered field of strength
h(= h(B) < B) perpendicular to the uniform field B.
Therefore, one is lead to investigate the Hamiltonian:

H(h) = H+hS3(0)+BSl(7T) (61)
The authors of reference [36] studied the model (6.1) for
B = 0, which is just the case we investigated in this paper.
They came to the same conclusion concerning the opening
of the gap with h¢, e ~ 2/3, as we found here. The ques-
tion remains, how the exponent € changes if the uniform
field B is switched on. Moreover, the gap might evolve in
a different fashion for the field dependent and field inde-
pendent soft modes ¢ = w(1 — 2M) and ¢ = 7. We will
address these questions in a further publication [37].
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